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ABSTRACT

Starting from 4-substituted cyclohexanones, a practical synthetic route to enantiopure 6-substituted cis-decahydroquinolines has been
developed, the key steps being a stereoselective cyclocondensation of an unsaturated δ-keto ester derivative with (R)-phenylglycinol and the
stereoselective hydrogenation of the resulting tricyclic oxazoloquinolone lactams.

Bicyclic phenylglycinol-derived oxazolopiperidone lac-
tams provide a general solution for the synthesis of en-
antiopurepolysubstitutedpiperidinesbearingvirtually any
type of substitution pattern, including indolizidines, quino-
lizidines, hydroisoquinolines, other fused and bridged piper-
idine derivatives, and more complex piperidine-containing
natural products and bioactive compounds.1

Using related tricyclic oxazoloquinolone lactams as en-
antiomeric scaffolds, we have recently developed a proce-
dure that allows easy access to enantiopure 5-substituted

decahydroquinolines.2 Apart from their interest as bioac-
tive compounds,3 decahydroquinolines bearing substitu-
ents at the carbocyclic ring are very attractive synthetic
targets as there are few methodologies for their enantiose-
lective synthesis,4withnoprecedents for the preparation of
6-substituted derivatives.
In this letter, we disclose a practical synthetic route

to enantiopure 6-substituted cis-decahydroquinolines
using 4-substituted cyclohexanones 1 as the start-
ing materials. The key steps of the synthesis are a
stereoselective cyclocondensation of (R)-phenylglyci-
nol with an unsaturated δ-keto ester derivative 3 and
the stereoselective carbon�carbon double bond hy-
drogenation of the resulting tricyclic lactam 4, taking
advantage of the conformational rigidity of the tricyc-
lic system.
The required cyclohexenone esters 3 were prepared

from cyclohexanones 1 as outlined in Scheme 1, either
via bromination�elimination of δ-keto esters 2 (series a,b;
55�60%overall yield) or by alkylation of a keto sulfoxide5

intermediate with methyl acrylate, followed by thermal
elimination (series c�e; ∼75% overall yield).
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Treatment of unsaturated keto esters 3b�e with (R)-
phenylglycinol in a Dean�Stark apparatus, in refluxing
toluene containing isobutyric acid, stereoselectively led to
tricyclic cis-hydroquinoline lactams 4, in which the migra-
tion of the carbon�carbon double bond has occurred
(Scheme 2). Minor amounts of the cis-diastereoisomers 5
(7aR,11aR) were also formed (approximate 4:1 ratio;
75�80% overall yield).

The formation of these lactams can be accounted for by
considering that the initially formed conjugated imines
A are in equilibrium, via dienamines B, with two epimeric
β,γ-unsaturated imines C and four diastereoisomeric ox-
azolidines D, as outlined in Scheme 3.
Due to steric constraints, the subsequent irreversible

lactamization occurs only from the diastereoisomers
ox-1 and ox-2 that lead to the cis fused hydroquino-
lones 4 (major) and 5 (minor), via a chairlike transition
state in which the unsaturated carbon moiety of the
cyclohexene ring adopts an equatorial disposition with
respect to the incipient six-membered lactam ring
(Scheme 4). The cyclization occurs faster from ox-1, and consequently tricyclic lactam 4 is the major pro-

duct of the cyclocondensation reaction, as this oxazo-
lidine allows a less hindered approach of the ester
group to the nitrogen atom, avoiding the repulsive
interaction with the phenyl substituent.6 No lactams
with a trans hydroquinoline ring fusion were observed.

Scheme 4. The Lactamization Step

Scheme 1. Preparation of the Starting Unsaturated Keto Esters

Scheme 2. Cyclocondensation Reactions with (R)-Phenylglyci-
nol

Scheme 3. Mechanistic Pathway for the Cyclocondensation
Reaction
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Catalytic hydrogenation of lactams 4b,d,e in MeOH
using PtO2 as the catalyst took place in excellent yield with
high facial selectivity, with an uptake of hydrogen by the
most accessible R-face to give the respective decahydro-
quinolines 6 (Scheme 5). Minor amounts of the corre-
sponding C-9 epimers were also formed.
An X-ray crystallographic analysis of lactam 6b unam-

biguously confirmed the absolute configuration of the new
stereogenic center generated in the hydrogenation step and
of the hydroquinoline ring junction carbons formed in the
cyclocondensation reaction.

Alane reduction of crude tricyclic lactams 6 brought
about the stereoselective7 reductive opening of the oxazo-
lidine ring and the reduction of the lactam and ester (in
seriesb) carbonyl groups togive cis-decahydroquinolines7.8

A subsequent catalytic debenzylation in the presence of
Boc2O led to 6-substituted decahydroquinolines 8. Taking
into account the availability of the starting 4-substituted
cyclohexanones, the sequencereportedhereprovidesageneral
route to enantiopure 6-substituted cis-decahydroquinolines.
Similar cyclocondensation reactions of unsaturated keto

esters 3a�c and the saturated keto ester 3f with (S)-
tryptophanol9 (Scheme 6) were also highly stereoselective,
leading to the corresponding cis lactams 9 (3S,7aR,11aR)
as the major products [the ratio 9:(3S,7aS,11aS)-isomers
was 4:1; 65%�75% overall yield]. This significantly ex-
pands the potential of tricyclic oxazoloquinolone lactams
as chiral building blocks since (S)-tryptophanol not only
acts as a chiral inductor in the cyclocondensation reaction,

which was the role of (R)-phenylglycinol, but also can be
used to assemble more complex hydroquinoline-fused
derivatives. Thus, Bischler�Napieralski cyclization of tri-
cyclic lactams 9a,c,f10 followed by LiAlH4 reduction of the
resulting all-cis hexacyclic derivatives 10 stereoselectively
led in excellent yields (85�90%overall yield) to pentacyclic
amino alcohols 11, which embody the pentacyclic skeleton
of tangutorine.11

The configuration of the two stereogenic centers
generated in the cyclocondensation reaction was un-
ambiguously established by X-ray diffraction analysis
of the thiolactam derived from 9a, which was prepared
in 77% yield by treatment of 9a with Lawesson’s
reagent. On the other hand, the configuration of the
C-6a and C-14b stereocenters of 11 was deduced from
theNMRdata(COSY,HETCOR,andNOESYexperiments),
by considering a preferred cis-cisoid-cis conformation,12

and by comparison of the 13C NMR chemical shifts
with the values reported for tangutorine11 (see Supporting
Information).
The stereoselectivity of the Bischer�Napieralski cy-

clization can be rationalized by considering that the
attack of the hydride on the electrophilic carbon center

Scheme 6. Cyclocondensation Reactions with (S)-Tryptopha-
nol

Scheme 5. Synthesis of Enantiopure 6-Substituted cis-Decahy-
droquinolines
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of the conformationally rigid iminium intermediate
A occurs from the less hindered R-face, as depicted in
Scheme 6. In contrast with related hydride reductions,9c

the alternative attack from the β-face, under stereoelec-
tronic control,13 is hindered due to the presence of the
cyclohexene ring.
In summary, starting from 4-substituted cyclohexa-

nones, we have developed a practical route to enantiopure
6-substituted cis-decahydroquinolines, the key steps being
a cyclocondensation reaction of (R)-phenylglycinol with a
3-substituted 6-oxocyclohexenepropionate and the subse-
quent stereoselective carbon�carbon double bond hy-
drogenation of the resulting tricyclic lactam. Similar
cyclocondensation reactions using (S)-tryptophanol

provide access to more complex pentacyclic derivatives
related to natural products.
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